Schreier theorem on groups which split over free abelian groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicit function theorem over free groups

We introduce the notion of a regular quadratic equation and a regular NTQ system over a free group. We prove the results that can be described as Implicit function theorems for algebraic varieties corresponding to regular quadratic and NTQ systems. We will also show that the Implicit function theorem is true only for these varieties. In algebraic geometry such results would be described as lift...

متن کامل

Hindman’s Theorem in Abelian Groups

Hindman’s theorem tells us that for every finite colouring/partition of the natural numbers, there is an infinite subset X for which every finite subset X0 Ď X has the same colour for ř X0. Certain generalisations of this theorem to abelian groups are known to fail in the uncountable case but an example exists for boolean groups when the desired homogeneous set is finite. In this paper, I will ...

متن کامل

Quantum Error-Correction Codes on Abelian Groups

We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.

متن کامل

Free abelian lattice-ordered groups

Let n be a positive integer and FA`(n) be the free abelian latticeordered group on n generators. We prove that FA`(m) and FA`(n) do not satisfy the same first-order sentences in the language L={+,−, 0,∧,∨} if m 6= n. We also show that Th(FA`(n)) is decidable iff n ∈ {1, 2}. Finally, we apply a similar analysis and get analogous results for the free finitely generated vector lattices. A. M. S. C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1999

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-99-05306-x